

Project ‘Universum’

[image: _images/logo.svg]

Project Universum is a continuous integration framework, containing
a collection of functions that simplify implementation of the
automatic build, testing, static analysis and other steps.
The goal of this project is to provide unified approach for adding continuous integration
to any project. It currently supports Perforce, Git, Gerrit, Swarm, Jenkins and TeamCity.

Sometimes Universum system can be referred to as the framework or just CI.

Prerequisites

	OS Linux

	Python version 2.7

Preinstalled packages

Included to module installation

	sh module for Python

	mechanize module for Python

	requests module for Python

Optional (used for special VCS types)

Perforce

	p4 CLI (see official installation manual [https://www.perforce.com/manuals/p4sag/Content/P4SAG/install.linux.packages.install.html]
for details)

	P4Python (see official installation manual [https://www.perforce.com/helix-p4python-package-repositories-overview] for details)

Git

	Git client (use sudo apt-get install git)

	gitpython module for Python (use sudo pip install gitpython)

Optional (used for internal tests)

Need to be installed manually

	Docker (Right now only used for internal tests. See official installation manual [https://docs.docker.com/engine/installation/linux/ubuntu/#install-using-the-repository] for details)

	PIP version 9.0 or greater (See official installation manual [https://pip.pypa.io/en/stable/installing/] for details)

Included to module installation

	pytest module for Python

	pylint module for Python

	docker module for Python

	httpretty module for Python

	mock module for Python

	sphinx module for Python

	sphinx-argparse extension for Sphinx module

Getting started

Before installing or launching the Universum, please make sure your system meets the following
Prerequisites.

The main script (universum.py) is used for performing all CI-related actions.
If using raw sources, launch Universum via running this script with parameters:

$./universum.py --help

If using a module installed via PyPi, use created universum command from any suitable directory:

$ universum --help

In order to use the CI system with a project, a special configs.py file must be created.
The contents of such file are described on Configuring the project page.

We recommend to place configuration file somewhere inside the project tree.
Its location may also be specified by the CONFIG_PATH environment variable.

Command line

Main script of project Universum is universum.py.
All command-line parameters, general and module-related, are passed to this main script.

Note

Most of command-line parameters can be replaced by setting up corresponding environment
variables (see ‘env’ comment in descriptions)

Universum 0.18.6-python2.7.6

usage: universum [-h] [--version] [--build-only-latest] [--no-diff]
 [--artifact-dir ARTIFACT_DIR] [--no-archive]
 [--project-root PROJECT_ROOT]
 [--server-type {tc,jenkins,local}]
 [--tc-server TEAMCITY_SERVER] [--tc-build-id BUILD_ID]
 [--tc-configuration-id CONFIGURATION_ID]
 [--tc-auth-user-id TC_USER] [--tc-auth-passwd TC_PASSWD]
 [--jenkins-build-url BUILD_URL] [--report-build-start]
 [--report-build-success] [--report-only-fails]
 [--report-no-vote] [--out-type {tc,term,jenkins}]
 [--out {console,file}] [--config CONFIG_PATH]
 [--filter LAUNCHER.STEP_FILTER] [--report-to-review]
 [--vcs-type VCS_TYPE] [--git-checkout-id GIT_CHECKOUT_ID]
 [--git-cherry-pick-id GIT_CHERRYPICK_ID [GIT_CHERRYPICK_ID ...]]
 [--git-repo GIT_REPO] [--git-refspec GIT_REFSPEC]
 [--github-token GITHUB_TOKEN]
 [--github-check-name GITHUB_CHECK_NAME]
 [--github-check-id GITHUB_CHECK_ID]
 [--github-api-url GITHUB_API_URL]
 [--file-source-dir SOURCE_DIR] [--p4-client P4CLIENT]
 [--p4-sync SYNC_CHANGELIST [SYNC_CHANGELIST ...]]
 [--p4-shelve SHELVE_CHANGELIST [SHELVE_CHANGELIST ...]]
 [--p4-force-clean] [--p4-project-depot-path P4_PATH]
 [--p4-mappings P4_MAPPINGS [P4_MAPPINGS ...]]
 [--p4-port P4PORT] [--p4-user P4USER]
 [--p4-password P4PASSWD] [--swarm-server-url SWARM_SERVER]
 [--swarm-review-id REVIEW] [--swarm-change SWARM_CHANGELIST]
 [--swarm-pass-link PASS] [--swarm-fail-link FAIL]
 {poll,submit,nonci} ...

Named Arguments

	--version

	Display product name & version instead of launching.

	--build-only-latest

	Skip build if review version isn’t latest

Default: False

	--no-diff

	Only applies to build steps where code_report=True; disables calculating analysis diff for changed files, in this case full analysis report will be published

Default: False

Artifact collection

Parameters of archiving and collecting of build artifacts

	--artifact-dir, -ad

	Directory to collect artifacts to. Default is ‘artifacts’

Environment variable: $ARTIFACT_DIR

	--no-archive

	By default all directories noted as artifacts are copied as .zip archives. This option turn archiving off to copy bare directories to artifact directory

Default: False

Source files

Parameters determining the processing of repository files

	--project-root, -pr

	Temporary directory to copy sources to. Default is ‘temp’

Environment variable: $PROJECT_ROOT

	--report-to-review

	Perform test build for code review system (e.g. Gerrit or Swarm).

Default: False

	--vcs-type, -vt

	Possible choices: none, p4, git, gerrit, github

Select repository type to download sources from: Perforce (‘p4’), Git (‘git’), Gerrit (‘gerrit’), GitHub (‘github’) or a local directory (‘none’). Gerrit uses Git parameters. Each VCS type has its own settings.

Environment variable: $VCS_TYPE

Automation server

Automation server options

	--server-type, -st

	Possible choices: tc, jenkins, local

Type of environment to refer to (tc - TeamCity, jenkins - Jenkins, local - user local terminal). TeamCity and Jenkins environment is detected automatically when launched on build agent

TeamCity variables

TeamCity-specific parameters

	--tc-server, -ts

	TeamCity server URL

Environment variable: $TEAMCITY_SERVER

	--tc-build-id, -tbi

	teamcity.build.id

Environment variable: $BUILD_ID

	--tc-configuration-id, -tci

	system.teamcity.buildType.id

Environment variable: $CONFIGURATION_ID

	--tc-auth-user-id, -tcu

	system.teamcity.auth.userId

Environment variable: $TC_USER

	--tc-auth-passwd, -tcp

	system.teamcity.auth.password

Environment variable: $TC_PASSWD

Jenkins variables

Jenkins-specific parameters

	--jenkins-build-url, -jbu

	Link to build on Jenkins (automatically set by Jenkins)

Environment variable: $BUILD_URL

Result reporting

Build results collecting and publishing parameters

	--report-build-start, -rst

	Send additional comment to review system on build started (with link to log)

Default: False

	--report-build-success, -rsu

	Send comment to review system on build success (in addition to vote up)

Default: False

	--report-only-fails, -rof

	Include only the list of failed steps to reporting comments

Default: False

	--report-no-vote, -rnv

	Do not vote up/down review depending on result

Default: False

Output

Log appearance parameters

	--out-type, -ot

	Possible choices: tc, term, jenkins

Type of output to produce (tc - TeamCity, jenkins - Jenkins, term - terminal). TeamCity environment is detected automatically when launched on build agent.

	--out, -o

	Possible choices: console, file

Define whether to print build logs to console or file. Log file names are generated based on the names of build steps. By default, logs are printed to console when the build is launched on Jenkins or TeamCity agent

Configuration execution

External command launching and reporting parameters

	--config, -cfg

	Path to project config file (example: -cfg=my/prject/my_conf.py). Mandatory parameter.

Environment variable: $CONFIG_PATH

	--filter, -f

	
Allows to filter which steps to execute during launch.
String value representing single filter or a set of filters separated by ‘:’.
To define exclude pattern use ‘!’ symbol at the beginning of the pattern.

A Universum step match specified pattern when ‘filter’ is a substring of step ‘name’.
This functionality is similar to ‘boosttest’ and ‘gtest’ filtering, except special characters
(like ‘*’, ‘?’, etc.) are ignored.

Examples:

* -f=’run test’ - run only steps that contain ‘run test’ substring in their names

* -f=’!run test’ - run all steps except those containing ‘run test’ substring in their
names

* -f=’test 1:test 2’ - run all steps with ‘test 1’ OR ‘test 2’ substring in their names

* -f=’test 1:!unit test 1’ - run all steps with ‘test 1’ substring in their names except those
containing ‘unit test 1’

Git

	--git-checkout-id, -gco

	A commit ID to checkout. Could be exact commit hash, or branch name, or tag, etc.

Environment variable: $GIT_CHECKOUT_ID

	--git-cherry-pick-id, -gcp

	List of commit IDs to be cherry-picked, separated by comma. ‘–git-cherry-pick-id’ can be added to the command line several times

Environment variable: $GIT_CHERRYPICK_ID

	--git-repo, -gr

	See your project home page for exact repository identifier, passed to ‘git clone’. If using SSH, ‘–git-repo’ format is ‘ssh://user@server:port/detailed/path’

Environment variable: $GIT_REPO

	--git-refspec, -grs

	Any additional refspec to be fetched

Environment variable: $GIT_REFSPEC

GitHub

GitHub repository settings

	--github-token, -ght

	GitHub API token; for details see https://developer.github.com/v3/oauth_authorizations/

Environment variable: $GITHUB_TOKEN

	--github-check-name, -ghc

	The name of Github check run

Environment variable: $GITHUB_CHECK_NAME

Default: “Universum check”

	--github-check-id, -ghi

	Github check run ID

Environment variable: $GITHUB_CHECK_ID

	--github-api-url, -gha

	API URL for integration

Environment variable: $GITHUB_API_URL

Default: “https://api.github.com/”

Local files

Parameters for file settings in case of no VCS used

	--file-source-dir, -fsd

	A local folder for project sources to be copied from. This option is only needed when ‘–driver-type’ is set to ‘none’

Environment variable: $SOURCE_DIR

Perforce

	--p4-client, -p4c

	P4 client (workspace) name to be created. Use ‘–p4-force-clean’ option to delete this client while finalizing

Environment variable: $P4CLIENT

	--p4-sync, -p4h

	Sync (head) CL(s). Just a number will be interpreted as united CL for all added VCS roots. To add a sync CL for specific depot/workspace location, write location in the same format as in P4_MAPPINGS with ‘@<CL number>’ in the end, e.g. ‘//DEV/Solution/MyProject/…@1234567’. To specify more than one sync CL for several locations, add ‘–p4-sync’ several times or split them with comma

Environment variable: $SYNC_CHANGELIST

	--p4-shelve, -p4s

	List of shelve CLs to be applied, separated by comma. –p4-shelve can be added to the command line several times. Also shelve CLs can be specified via additional environment variables: SHELVE_CHANGELIST_1..5

Environment variable: $SHELVE_CHANGELIST

	--p4-force-clean

	Revert all vcs within ‘–p4-client’ and delete the workspace. Mandatory for CI environment, otherwise use with caution

Default: False

	--p4-project-depot-path, -p4d

	Depot path to get sources from (starts with ‘//’, ends with ‘/…’Only supports one path. Cannot be used with ‘–p4-mappings’ option

Environment variable: $P4_PATH

	--p4-mappings, -p4m

	P4 mappings. Cannot be used with ‘–p4-project-depot-path’ option. Use the following format: ‘//depot/path/… /local/path/…’, where the right half is the same as in real P4 mappings, but without client name. Just start from client root with one slash. For more than one add several times or split with ‘,’ character

Environment variable: $P4_MAPPINGS

	--p4-port, -p4p

	P4 port (e.g. ‘myhost.net:1666’)

Environment variable: $P4PORT

	--p4-user, -p4u

	P4 user name

Environment variable: $P4USER

	--p4-password, -p4P

	P4 password

Environment variable: $P4PASSWD

Swarm

Parameters for performing a test run for pre-commit review

	--swarm-server-url, -ssu

	Swarm server URL; is used for additional interaction such as voting for the review

Environment variable: $SWARM_SERVER

	--swarm-review-id, -sre

	Swarm review number; is sent by Swarm triggering link as ‘{review}’

Environment variable: $REVIEW

	--swarm-change, -sch

	Swarm change list to unshelve; is sent by Swarm triggering link as ‘{change}’

Environment variable: $SWARM_CHANGELIST

	--swarm-pass-link, -spl

	Swarm ‘success’ link; is sent by Swarm triggering link as ‘{pass}’

Environment variable: $PASS

	--swarm-fail-link, -sfl

	Swarm ‘fail’ link; is sent by Swarm triggering link as ‘{fail}’

Environment variable: $FAIL

Additional commands

	{poll,submit,nonci}

	
universum poll

universum submit

universum nonci

Code report

The following analysing modules (analysers) are installed by default: universum_pylint, universum_svace,
universum_uncrustify. Analysers are separate scripts, fully compatible with Universum.
It is possible to use them independently from command line.

All analysers must have an argument for JSON file with analysis results. If you run code report independently,
the name must conform to file name standards. If argument is not provided, output will be written to console.

Running analysers from Universum, you need to add code_report=True and result file argument mandatory must be
set to "${CODE_REPORT_FILE}". "${CODE_REPORT_FILE}" is a pseudo-variable that will be replaced with
the file name during execution. Also, you are able not to add code_report=True option and name file as you wish,
in this case result file won’t be processed according to the rules defined for analysers and step will be marked as
Failed if there are analysis issues found.

Note

When using Universum, if file with analysis results is not added to artifacts, it will be deleted
along with other build sources and results.

When using via Universum code_report=True step, use --report-to-review
functionality to comment on any found issues to code review system.

Pylint

Pylint analyzer

usage: universum_pylint [-h] [--files FILE_LIST [FILE_LIST ...]]
 [--rcfile RCFILE] [--python-version {2,3}]
 [--result-file RESULT_FILE]

Named Arguments

	--files

	Python files and Python packages for Pylint.

	--rcfile

	Specify a configuration file.

	--python-version

	Possible choices: 2, 3

Version of Python

Default: “3”

	--result-file

	File for storing json results of Universum run. Set it to “${CODE_REPORT_FILE}” for running from Universum, variable will be handled during run. If you run this script separately from Universum, just name the result file or leave it empty.

Config example for universum_pylint:

from _universum.configuration_support import Variations

configs = Variations([dict(name="pylint", code_report=True, command=["universum_pylint",
 "--python-version", "3", "--result-file", "${CODE_REPORT_FILE}",
 "--files", "*.py", "examples/"])
])

if __name__ == '__main__':
 print configs.dump()

This file will get us the following list of configurations:

$./configs.py
[{'command': 'universum_pylint --python-version 3 --result-file ${CODE_REPORT_FILE} --files *.py examples/', 'name': 'pylint', 'code_report': True}]

Svace

Svace analyzer

usage: universum_svace [-h] [--build-cmd BUILD_CMD [BUILD_CMD ...]]
 [--lang {JAVA,CXX}] [--project-name PROJECT_NAME]
 [--result-file RESULT_FILE]

Named Arguments

	--build-cmd

	Relative path to build script or command itself

	--lang

	Possible choices: JAVA, CXX

Language to analyze

	--project-name

	Svace project name defined on server

	--result-file

	File for storing json results of Universum run. Set it to “${CODE_REPORT_FILE}” for running from Universum, variable will be handled during run. If you run this script separately from Universum, just name the result file or leave it empty.

Config example for universum_svace:

from _universum.configuration_support import Variations

configs = Variations([dict(name="svace", code_report=True, command=["universum_svace",
 "--build-cmd", "make", "--lang", "CXX",
 "--result-file", "${CODE_REPORT_FILE}"])
])

if __name__ == '__main__':
 print configs.dump()

will produce this list of configurations:

$./configs.py
[{'command': 'universum_svace --build-cmd make --lang CXX --result-file ${CODE_REPORT_FILE}', 'name': 'svace', 'code_report': True}]

Uncrustify

Uncrustify analyzer

usage: universum_uncrustify [-h] [--files [FILE_NAMES [FILE_NAMES ...]]]
 [--file-list [FILE_LISTS [FILE_LISTS ...]]]
 [--cfg-file CFG_FILE]
 [--filter-regex [PATTERN_FORM [PATTERN_FORM ...]]]
 [--output-directory OUTPUT_DIRECTORY]
 [--result-file RESULT_FILE]

Named Arguments

	--files, -f

	File or directory to check; accepts multiple values; all files specified by both ‘–files’ and ‘–file-list’ are gathered into one combined list of files

	--file-list, -fl

	Text file with list of files or directories to check; can be used with ‘–files’; accepts multiple values; all files specified by both ‘–files’ and ‘–file-list’ are gathered into one combined list of files

	--cfg-file, -cf

	Name of the configuration file of Uncrustify; can also be set via ‘UNCRUSTIFY_CONFIG’ env. variable

	--filter-regex, -r

	(optional) Python 2.7 regular expression filter to apply to combined list of files to check

	--output-directory, -od

	Directory to store fixed files, generated by Uncrustify and HTML files with diff; the default value is ‘uncrustify’

	--result-file

	File for storing json results of Universum run. Set it to “${CODE_REPORT_FILE}” for running from Universum, variable will be handled during run. If you run this script separately from Universum, just name the result file or leave it empty.

Config example for universum_uncrustify:

from _universum.configuration_support import Variations

configs = Variations([dict(name="uncrustify", code_report=True, command=["universum_uncrustify",
 "--files", "project_root_directory", "--cfg-file", "file_name.cfg",
 "--filter-regex", ".*//.(?:c|cpp)", "--result-file", "${CODE_REPORT_FILE}",
 "--output-directory", "uncrustify"])
])

if __name__ == '__main__':
 print configs.dump()

will produce this list of configurations:

$./configs.py
[{'command': 'universum_uncrustify --files project_root_directory --cfg-file file_name.cfg --filter-regex .*//.(?:c|cpp) --result-file ${CODE_REPORT_FILE} --output-directory uncrustify', 'name': 'uncrustify', 'code_report': True}]

Configuring the project

In order to use the Universum, the project should provide a configuration file.
This file is a regular python script with specific interface, which is recognized
by the Universum.

The path to the configuration file is supplied to the main script via the CONFIG_PATH
environment variable or --launcher-config-path / -lcp command-line parameter.
Internally the config file is processed by the _universum.launcher module. The path is passed
to this module in config_path member of its input settings.

Note

Generally there should be no need to implement complex logic in the configuration file,
however the Universum doesn’t limit what project uses its configuration file for. Also,
there are no restriction on using of external python modules, libraries or on the
structure of the configuration file itself.

The project is free to use whatever it needs in the configuration file for its needs.

Project configuration

Project configuration (also mentioned as build configuration) is a simple complete way
to test the project: e.g., build it for some specific platform, or run some specific test script.
Basically, project configuration is a single launch of some external application or script.

For example:

$./build.sh -d --platform MSM8996
$ make tests
$./run_regression_tests.sh

— are three different possible project configurations.

Minimal project configuration file

Below is an example of the configuration file in its most basic form:

from _universum.configuration_support import Variations

configs = Variations([dict(name="Build", command=["build.sh"])])

This configuration file uses a Variations class
from the _universum.configuration_support
module and defines one build configuration.

Note

Creating a Variations instance takes a list of dictionaries as an argument,
where every new list member describes a new project configuration.

	The _universum.configuration_support module provides several functions to be used by project configuration files

	The Universum expects project configuration file to define global variable with
name configs. This variable defines all project configurations to be used in a build.

The minimal project configuration file example defines just one project configuration with
the following parameters:

	name is a string “Build”

	command is a list with a string item “build.sh”

Note

Command line is a list with (so far) one string item, not just a string.
Command name and all the following arguments must be passed as a list of separate strings.
See List of configurations for more details.

Execution directory

Some scripts (using relative paths or filesystem communication commands like pwd)
work differently when launching them via ./scripts/run.sh and via cd scripts/ && ./run.sh.

Also, some console applications, such as make and ant, support setting working directory
using special argument. Some other applications lack this support.

That is why it is sometimes necessary, and sometimes just convenient to launch
the configuration command in a directory other then project root. This can be easily done
using directory keyword:

from _universum.configuration_support import Variations

configs = Variations([dict(name="Make Special Module", directory="specialModule", command=["make"])])

To use a Makefile located in “specialModule” directory without passing “-C SpecialModule/”
arguments to make command, the launch directory is specified.

get_project_root()

By default for any launched external command current directory is the actual directory
containing project files. So any internal relative paths for the project should not cause any troubles.
But when, for any reason, there’s a need to refer to project location absolute path, it is
recommended to use get_project_root() function from _universum.configuration_support module.

Note

The Universum launches in its own working directory that may be changed for every run
and therefore cannot be hardcoded in configs.py file. Also, if not stated otherwise,
project sources are copied to a temporary directory that will be deleted after a run.
This directory may be created in different places depending on various Universum settings
(not only the working directory, mentioned above), so the path to this directory
can not be hardcoded too.

The _universum.configuration_support module processes current Universum run settings and returns
actual project root to the config processing module.

See the following example configuration file:

from _universum.configuration_support import Variations, get_project_root

configs = Variations([dict(name="Run tests", directory="/home/scripts", command=["./run_tests.sh", "--directory", get_project_root()])])

In this configuration a hypothetical external script “run_tests.sh” requires absolute path
to project sources as an argument. The get_project_root() will pass the actual project root,
no matter where the sources are located on this run.

List of configurations

The Universum gets the list of project configurations from the configs global variable.
In the basic form this variable contains a flat list of items, and each item represents one
project configuration.

Below is an example of the configuration file with three different configurations:

from _universum.configuration_support import Variations, get_project_root
import os.path

test_path = os.path.join(get_project_root(), "out/tests")
configs = Variations([dict(name="Make Special Module", command=["make", "-C", "SpecialModule/"], artifacts="out"),
 dict(name="Run internal tests", command=["scripts/run_tests.sh"]),
 dict(name="Run external tests", directory="/home/scripts", command=["run_tests.sh", "-d", test_path])
])

The example configuration file declares the following Universum run steps:

	Make a module, located in “specialModule” directory

	Run a “run_tests.sh” script, located in “scripts” directory

	Run a “run_tests.sh” script, located in external directory “home/scripts”
and pass an absolute path to a directory “out/tests” inside project location

	Copy artifact directory “out” to the working directory

Note

Concatenating get_project_root() results with any other paths is recommended using
os.path.join() function to avoid any possible errors on path joining.

Common Variations keys

Each configuration description is a python dictionary with the following possible keys:

	name

	Specifies the name of the configuration. The name is used as the title of the build log
block corresponding to the build of this configuration. It is also used to generate
name of the log file if the option for storing to log files is selected.
A project configuration can have no name, but it is not recommended for aesthetic reasons.
If several project configurations have the same names, and logs are stored to files
(see --launcher-output / -lo command-line parameter for details),
all logs for such configurations will be stored to one file in order of their appearances.

	command

	The list with command line for the configuration launch. For every project configuration
first list item should be a console command (e.g. script name, or any other command like ls),
and other list items should be the arguments, added to the command (e.g. --debug or -la).
Every command line element, separated with space character, should be passed as a separate
string argument. Lists like ["ls -a"] will not be processed correctly and thus
should be splat into ["ls", "-a"]. Lists like ["build.sh", "--platform A"]
will not be processed correctly and thus should be plat into ["build.sh", "--platform", "A"].
A project configuration can have an empty list as a command. Such configuration
won’t do anything except informing user about missing it.

	environment

	Python dictionary of required environment variables, e.g. environment={"VAR1": "String", "VAR2": "123"}
Can be set at any step level, but re-declaring variables is not supported, so please make sure
to mention every variable only one time at most.

	artifacts

	Path to the file or directory to be copied to the working directory as an execution result.
Can contain shell-style pattern matching (e.g. “out/*.html”), including recursive wildcards
(e.g. “out/**/index.html”).
If not stated otherwise (see --no-archive command-line parameter
for details), artifact directories are copied as archives.
If ‘artifact_prebuild_clean’ key is either absent or set to False and
stated artifacts are present in downloaded sources, it is considered a failure and configuration
execution will not proceed.
If no required artifacts were found in the end of the Universum run, it is also considered a failure.
In case of shell-style patterns build is failed if no files or directories matching pattern are found.
Any project configuration may or may not have any artifacts.

	report_artifacts

	Special artifacts for reporting (e.g. to Swarm). A separate link to each of such artifacts
will be added to the report. Unlike artifacts,
report_artifacts are not obligatory and their absence is not considered a build failure.
A directory cannot be stored as a separate artifact, so when using --no-archive option,
do not claim directories as report_artifacts.
Please note that any file can be claimed as artifact, report_artifact, or both.
A file, claimed both in artifacts and report_artifacts, will be mentioned in a report
and will cause build failure when missing.

	artifact_prebuild_clean

	Basic usage is adding artifact_prebuild_clean=True to configuration description.
By default artifacts are not stored in VCS, and artifact presence before build most likely
means that working directory is not cleaned after previous build and therefore might influence
build results. But sometimes deliverables have to be stored in VCS, and in this case
instead of stopping the build they should be simply cleaned before it. This is where
artifact_prebuild_clean=True key is supposed to be used. If set without any artifacts
or report_artifacts, this key will be ignored.

	directory

	Path to a current working directory for launched process.
Please see the Execution directory section for details. No directory is equal to
empty string passed as directory and means the command will be launched
from project root directory.

	critical

	Basic usage is adding critical=True to configuration description.
This parameter is used in case of a linear step execution, when the result of some step is
critical for the subsequent step execution. If some configuration has critical key set to True
and executing this step fails, no more configurations will be executed during this run.
However, all already started background steps will be finished
regardless critical step results.

	background

	Basic usage is adding background=True to configuration description.
This parameter means that configuration should be executed independently in parallel with
all other steps. All logs from such steps are written to file, and the results of execution
are collected in the end of Universum run. Next step execution begins immediately after
starting a background step, not waiting for it to be completed. Several background steps
can be executed simultaneously.

	finish_background

	Basic usage is adding finish_background=True to configuration description.
This parameter means that before executing this particular step all ongoing background steps
(if any) should be finished first.

	code_report

	Basic usage is adding code_report=True to configuration description and --result-file="${CODE_REPORT_FILE}"
to ‘command’ arguments.
Specifies step that performs static or syntax analysis of code.
Analyzers currently provided by Universum: universum_pylint, universum_svace and universum_uncrustify
(see code_report parameter for details).

	pass_tag, fail_tag

	Basic usage is adding pass_tag="PASS", fail_tag="FAIL" to the configuration description.
These keys is implemented only for TeamCity build. You can specify one, both or neither of them per step.
Defining pass_tag="PASS" means that current build on TeamCity will be tagged with label PASS
if this particular step succeeds. Defining fail_tag="FAIL" means that current build on TeamCity will be
tagged with label FAIL if this particular step fails. Key values can be set to any strings acceptable by
TeamCity as tags. It is not recommended to separate words in the tag with spaces, since you cannot create
a tag with spaces in TeamCity’s web-interface. Every tag is added (if matching condition) after executing
build step it is set in, not in the end of all run.
pass_tag and fail_tag can also be used in configurations multiplications, like this:

make = Variations([dict(name="Make ", command=["make"], pass_tag="pass_")])

target = Variations([dict(name="Linux", command=["--platform", "Linux"], pass_tag="Linux"),
 dict(name="Windows", command=["--platform", "Windows"], pass_tag="Windows")
])

configs = make * target

This code will produce this list of configurations:

$./configs.py
[{'command': 'make --platform Linux', 'name': 'Make Linux', 'pass_tag': 'pass_Linux'},
{'command': 'make --platform Windows', 'name': 'Make Windows', 'pass_tag': 'pass_Windows'}]

This means that tags “pass_Linux” and “pass_Windows” will be sent to TeamCity’s build.

Note

All the paths, specified in command, artifacts and directory parameters, can be
absolute or relative. All relative paths start from the project root (see get_project_root()).

Dump configurations list

Class Variations have a build-in function dump(), that processes the passed dictionaries
and returns the list of all included configurations.

Below is an example of the configuration file that uses dump() function for debugging:

#!/usr/bin/env python

from _universum.configuration_support import Variations, get_project_root
import os.path

test_path = os.path.join(get_project_root(), "out/tests")
configs = Variations([dict(name="Make Special Module", command=["make", "-C", "SpecialModule/"], artifacts="out"),
 dict(name="Run internal tests", command=["scripts/run_tests.sh"]),
 dict(name="Run external tests", directory="/home/scripts", command=["run_tests.sh", "-d", test_path])
])

if __name__ == '__main__':
 print configs.dump()

The combination of #!/usr/bin/env python and if __name__ == '__main__': allows launching
the configs.py script from shell.

For from _universum.configuration_support import to work correctly, configs.py should be copied to
Universum root directory and launched there.

When launched from shell instead of being used by Universum system, get_project_root() function
returns current directory instead of actual project root.

The only thing this script will do is create configs variable and print all project configurations
it includes. For example, running the script, given above, will result in the following:

$./configs.py
[{'artifacts': 'out', 'command': 'make -C SpecialModule/', 'name': 'Make Special Module'},
{'command': 'scripts/run_tests.sh', 'name': 'Run internal tests'},
{'directory': '/home/scripts', 'command': 'run_tests.sh -d /home/Project/out/tests', 'name': 'Run external tests'}]

As second and third build configurations have the same names, if log files are created,
only two logs will be created: one for the first build step, another for both second and third,
where the third will follow the second.

Combining configurations

The Variations class provides a way to generate a full testing scenario by simulating the
combination of configurations.

For this class Variations has built-in + and * operators that allow creating
configuration sets out of several Variations instances.

Adding build configurations

See the following example:

#!/usr/bin/env python

from _universum.configuration_support import Variations

one = Variations([dict(name="Make project", command=["make"])])
two = Variations([dict(name="Run tests", command=["run_tests.sh"])])

configs = one + two

if __name__ == '__main__':
 print configs.dump()

The addition operator will just concatenate two lists into one, so
the result of such configuration file will be
the following list of configurations:

$./configs.py
[{'command': 'make', 'name': 'Make project'},
{'command': 'run_tests.sh', 'name': 'Run tests'}]

Multiplying build configurations

Multiplication operator can be used in configuration file two ways:

	multiplying configuration by a constant

	multiplying configuration by another configuration

Multiplying configuration by a constant is just an equivalent of multiple additions:

>>> run = Variations([dict(name="Run tests", command=["run_tests.sh"])])
>>> print (run * 2 == run + run)
True

Though the application area of multiplication by a constant is unclear at the moment.

Multiplying configuration by a configuration combines their properties.
For example, this configuration file:

#!/usr/bin/env python

from _universum.configuration_support import Variations

make = Variations([dict(name="Make ", command=["make"], artifacts="out")])

target = Variations([dict(name="Platform A", command=["--platform", "A"]),
 dict(name="Platform B", command=["--platform", "B"])
])

configs = make * target

if __name__ == '__main__':
 print configs.dump()

will produce this list of configurations:

$./configs.py
[{'artifacts': 'out', 'command': 'make --platform A', 'name': 'Make Platform A'},
{'artifacts': 'out', 'command': 'make --platform B', 'name': 'Make Platform B'}]

	command and name values are produced of command and name values of each of two configurations

	artifacts value, united with no corresponding value in second configuration, remains unchanged

Note

Note the extra space character at the end of the configuration name “Make “.
As multiplying process uses simple adding of all corresponding configuration settings,
string variables are just concatenated, so without extra spaces resulting name
would look like “MakePlatform A”. If we add space character, the resulting name
becomes “Make Platform A”.

Combination of addition and multiplication

When creating a project configuration file, the two available operators, + and *,
can be combined in any required way. For example:

#!/usr/bin/env python

from _universum.configuration_support import Variations

make = Variations([dict(name="Make ", command=["make"], artifacts="out")])
test = Variations([dict(name="Run tests for ", directory="/home/scripts", command=["run_tests.sh", "--all"])])

debug = Variations([dict(name=" - Release"),
 dict(name=" - Debug", command=["-d"])
])

target = Variations([dict(name="Platform A", command=["--platform", "A"]),
 dict(name="Platform B", command=["--platform", "B"])
])

configs = make * target + test * target * debug

if __name__ == '__main__':
 print configs.dump()

This file will get us the following list of configurations:

$./configs.py
[{'artifacts': 'out', 'command': 'make --platform A', 'name': 'Make Platform A'},
{'artifacts': 'out', 'command': 'make --platform B', 'name': 'Make Platform B'},
{'directory': '/home/scripts', 'command': 'run_tests.sh --all --platform A', 'name': 'Run tests for Platform A - Release'},
{'directory': '/home/scripts', 'command': 'run_tests.sh --all --platform A -d', 'name': 'Run tests for Platform A - Debug'},
{'directory': '/home/scripts', 'command': 'run_tests.sh --all --platform B', 'name': 'Run tests for Platform B - Release'},
{'directory': '/home/scripts', 'command': 'run_tests.sh --all --platform B -d', 'name': 'Run tests for Platform B - Debug'}]

As in common arithmetic, multiplication is done before addition. To change the operations
order, use parentheses:

>>> configs = (make + test * debug) * target

Excluding configurations

At the moment there is no support for - operator.
There is no easy way to exclude one of configurations, generated by adding/multiplying.
But there is a conditional including implemented. To include/exclude configuration depending on
environment variable, use if_env_set key. When script comes to executing a configuration with
such key, if there’s no environment variable with stated name set to either “true”, “yes” or “y”,
configuration is not executed. If any other value should be set, use
if_env_set="VARIABLE_NAME == variable_value" comparison. Please pay special attention on
the absence of any quotation marks around variable_value: if added, $VARIABLE_NAME will be
compared with “variable_value” string and thus fail. Also, please note, that all spaces before and after
variable_value will be automatically removed, so if_env_set="VARIABLE_NAME == variable_value " will
be equal to os.environ["VARIABLE_NAME"] = "variable_value" but not
os.environ["VARIABLE_NAME"] = "variable_value ".

$VARIABLE_NAME consist solely of letters, digits, and the ‘_’ (underscore) and not begin with a digit.

If such environment variable should not be set to specific value, please use
if_env_set="VARIABLE_NAME != variable_value" (especially != True for variables
to not be set at all).

If executing the configuration depends on more than one environment variable,
use && inside if_env_set value. For example,
if_env_set="SPECIAL_TOOL_PATH && ADDITIONAL_SOURCES_ROOT" configuration will be executed only
in case of both $SPECIAL_TOOL_PATH and $ADDITIONAL_SOURCES_ROOT environment variables set
to some values. If any of them is missing or not set in current environment,
the configuration will be excluded from current run.

‘configuration_support’ module

See also

Please see Configuring the project for more examples and detailed explanation

_universum.configuration_support

	
combine(dictionary_a, dictionary_b)

	Combine two dictionaries using plus operator for matching keys

	Parameters

	
	dictionary_a – may have any keys and values

	dictionary_b – may have any keys, but the values of keys, matching dictionary_a,
should be the same type

	Returns

	new dictionary containing all keys from both dictionary_a and dictionary_b;
for each matching key the value in resulting dictionary is a sum of two corresponding values

For example:

>>> combine(dict(attr_a = "a1", attr_b = ["b11", "b12"]), dict(attr_a = "a2", attr_b = ["b2"]))
{'attr_b': ['b11', 'b12', 'b2'], 'attr_a': 'a1a2'}

>>> combine(dict(attr_a = {"a1": "v1"}, attr_b = {"b1": "v1"}), dict(attr_a = {"a2": "v2"}))
{'attr_b': {'b1': 'v1'}, 'attr_a': {'a1': 'v1', 'a2': 'v2'}}

	
class Variations

	Variations is a class for establishing project configurations.
This class object is a list of dictionaries:

>>> v1 = Variations([{"field1": "string"}])
>>> v1
[{'field1': 'string'}]

Build-in method all() generates iterable for all configuration dictionaries for further usage:

>>> for i in v1.all(): i
{'field1': 'string'}

Built-in method dump() will generate a printable string representation of the object.
This string will be printed into console output

>>> v1.dump()
"[{'field1': 'string'}]"

Adding two objects will extend list of dictionaries:

>>> v2 = Variations([{"field1": "line"}])
>>> for i in (v1 + v2).all(): i
{'field1': 'string'}
{'field1': 'line'}

While multiplying them will combine same fields of dictionaries:

>>> for i in (v1 * v2).all(): i
{'field1': 'stringline'}

When a field value is a list itself -

>>> v3 = Variations([dict(field2=["string"])])
>>> v4 = Variations([dict(field2=["line"])])

multiplying them will extend the inner list:

>>> for i in (v3 * v4).all(): i
{'field2': ['string', 'line']}

	
__add__(other)

	This functions defines operator + for Variations class objects by
concatenating lists of dictionaries into one list.
The order of list members in resulting list is preserved: first all dictionaries from self,
then all dictionaries from other.

	Parameters

	other – Variations object to be added to self

	Returns

	new Variations object, including all configurations from both self and other objects

	
__mul__(other)

	This functions defines operator * for Variations class objects.
The resulting object is created by combining every self list member with
every other list member using combine() function.

	Parameters

	other – Variations object to be multiplied to self

	Returns

	new Variations object, consisting of the list of combined configurations

	
all()

	Function for configuration iterating.

	Returns

	iterable for all dictionary objects in Variations list

	
dump(produce_string_command=True)

	Function for Variations objects pretty printing.

	Parameters

	produce_string_command – if set to False, prints “command” as list instead of string

	Returns

	a user-friendly string representation of all configurations list

	
filter(checker, parent=None)

	This function is supposed to be called from main script, not configuration file.
It uses provided checker to find all the configurations that pass the check,
removing those not matching conditions.

	Parameters

	
	checker – a function that returns True if configuration passes the filter and False otherwise

	parent – an inner parameter for recursive usage; should be None when function is called from outside

	Returns

	new Variations object without configurations not matching checker conditions

	
set_project_root(project_root)

	Function to be called from main script; not supposed to be used in configuration file.
Stores generated project location for further usage. This function is needed because
project sources most likely will be copied to a temporary directory
of some automatically generated location and the CI run will be performed there.

	Parameters

	project_root – path to actual project root

	
get_project_root()

	Function to be used in configuration file. Inserts actual project location after
that location is generated. If project root is not set, function returns current directory.

	Returns

	actual project root

Other modules documentation

_universum.modules.launcher

	
check_if_env_set(configuration)

	Predicate function for _universum.configuration_support.Variations.filter(),
used to decide whether this particular configuration should be executed in this
particular environment. For more information see Excluding configurations

>>> from _universum.configuration_support import Variations
>>> c = Variations([dict(if_env_set="MY_VAR != some value")])
>>> check_if_env_set(c[0])
True

>>> c = Variations([dict(if_env_set="MY_VAR != some value && OTHER_VAR")])
>>> check_if_env_set(c[0])
False

>>> c = Variations([dict(if_env_set="MY_VAR == some value")])
>>> os.environ["MY_VAR"] = "some value"
>>> check_if_env_set(c[0])
True

	Parameters

	configuration – Variations
object containing one leaf configuration

	Returns

	True if environment satisfies described requirements; False otherwise

Integration with TeamCity

The main design goal of Universum is to integrate with various CI systems.
E.g. continuous integration/automation, version control, static analysis, testing, etc.

One of popular continuous integration systems is TeamCity, and this particular tutorial will explain
how to integrate it with Universum.

The proposed scenario includes the following steps:

	Install and configure both TeamCity and Universum systems, prepare TeamCity build servers for
project building/running/testing/etc.

	Create a project on TeamCity. Configure common parameters for the project:

	project parameters, if any

	parameters for Universum

TeamCity configurations automatically inherit all project settings,
so configuring them once on project-level allows to avoid multiple reconfiguring
of same parameters in each configuration, and all changes applied to project settings
are automatically applied to all inherited settings

	Create a common
TeamCity meta-runner [https://confluence.jetbrains.com/display/TCD8/Working+with+Meta-Runner].
TeamCity offers two ways of using meta-runners:

	creating a new configuration out of existing meta-runner

	using an existing meta-runner as a build step

Both of this scenarios have their own benefits: when creating a configuration, all parameters
are inherited too; but when using a build step, any change in meta-runner automatically
affects all configurations using it

	Create all needed configurations, such as:

	precommit check

	postcommit check

	testing

	etc.

This scenario pays a lot of attention to reusing settings instead of just copying them.
It is most important in cases when some of these settings have to be changed: if generalized
on project level, there’s only one place to fix. And if all similar settings are duplicated,
tracking changes becomes more difficult the more times they are copied.

Install Universum on build agents

	Download Universum sources to the build server

	Install Universum on build server by running sudo pip install . in Universum sources root directory

	Install and configure TeamCity server

	Install build agents on build server, add them to the project pool

Please refer to
TeamCity official manuals [https://www.jetbrains.com/teamcity/documentation/] for details.

Create a top-level project

	Create new project for all Universum configurations or add a sub-project to an existing one

	Go to Parameters section in Project Settings and add the following parameters:

	env.BUILD_ID

	%teamcity.build.id%

	env.CONFIGURATION_ID

	%system.teamcity.buildType.id%

	env.TEAMCITY_SERVER

	server URL to refer to in reports

	env.CONFIGURATION_PARAMETERS

	will be used in meta-runner; leave empty so far

Making all projects using Universum sub-projects to this one will automatically add all these
parameters to their settings.

Create a common meta-runner

	Create an .xml file with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<meta-runner name="Run build using CI system">
 <description>Basic project configuration</description>
 <settings>
 <build-runners>
 <runner name="Download and run" type="simpleRunner">
 <parameters>
 <param name="script.content"><![CDATA[
#!/bin/bash

EXITCODE=0

HOST=`hostame | sed -e "s/_/-/"`
USER=`whoami | sed -e "s/_/-/"`
P4CLIENT="Disposable_workspace_"$HOST"-"$USER

cmd="universum --p4-client ${P4CLIENT} --p4-force-clean %env.CONFIGURATION_PARAMETERS%"
echo "==> Run: ${cmd}"
${cmd} || EXITCODE=1

echo "##teamcity[setParameter name='STOPPED_BY_USER' value='false']"

exit $EXITCODE]]></param>
 <param name="teamcity.step.mode" value="default" />
 <param name="use.custom.script" value="true" />
 </parameters>
 </runner>
 <runner name="Clean" type="simpleRunner">
 <parameters>
 <param name="script.content"><![CDATA[
#!/bin/bash

if [%STOPPED_BY_USER% == true]
then
echo "==> User interrupted, force cleaning"

EXITCODE=0

HOST=`hostame | sed -e "s/_/-/"`
USER=`whoami | sed -e "s/_/-/"`
P4CLIENT="Disposable_workspace_"$HOST"-"$USER

cmd="python -u ./universum.py --p4-client ${P4CLIENT} --p4-force-clean %env.CONFIGURATION_PARAMETERS% --finalize-only --artifact-dir finalization_artifacts"
echo "==> Run: ${cmd}"
${cmd}

else
echo "==> Additional cleaning not needed, skipping"
fi
]]></param>
 <param name="teamcity.step.mode" value="execute_always" />
 <param name="use.custom.script" value="true" />
 </parameters>
 </runner>
 </build-runners>
 </settings>
</meta-runner>

Note

Universum default VCS type is Perforce, so this meta-runner is oriented to be used with P4.
But the same meta-runner can be used for configurations using any other VCS type.
Unused P4 parameters will be just ignored.

	In Project Settings find Meta-Runners page and press Upload Meta-Runner

	Select your newly created .xml file as a Meta-Runner file

Configure project using Perforce

	Create a sub-project to a created earlier top-level project

	Go to Parameters in Project Settings

	Add env.CONFIG_PATH: a relative path to project configuration file,
starting from project root

	Also add all required project-wide Perforce parameters:

	env.P4USER

	Perforce user ID

	env.P4PASSWD

	user <env.P4USER> password

	env.P4PORT

	Perforce server URL (including port if needed)

	env.P4_MAPPINGS

	Perforce mappings in special format.
Also can be replaced with legacy env.P4_PATH (but not both at a time)

Create basic postcommit configuration

	After creating new build configuration, go to Build Configuration Settings

	To get artifacts from default artifact directory, go to General Settings,
find Artifact paths field and add artifacts/* line there

	To trigger builds via TeamCity but download via Universum, go to Version Control Settings,
attach required
VCS Root [https://confluence.jetbrains.com/display/TCD9/VCS+root]
and set VCS checkout mode to Do not checkout files automatically

	Go to Triggers and add VCS Trigger with required settings

	Go to Build steps, press Add build step, in Runner type scroll down to
your project runners and select a meta-runner created earlier

After setting up all the environment variables right, you must get the fully working configuration.

Create configuration for custom builds

	As in postcommit, specify artifacts/* in Artifact paths
and add your meta-runner as a Build step

	Attaching VCS root is not necessary because custom build configurations
usually do not use VCS Trigger; instead of this, add the following parameters to configuration:

	env.SYNC_CHANGELIST

	can be a CL number or a list of sync CLs for several different P4_MAPPINGS,
see ‘–p4-sync’ option description

	env.SHELVE_CHANGELIST

	one or several coma-separated CLs to unshelve for the build

Integrate with Swarm

	Go to Build Configuration Settings (or to Project Settings, if you plan on having
more than one Swarm-related configuration)

	Create env.REVIEW, env.PASS and env.FAIL parameters and leave them empty

	In Build Configuration Settings –> Parameters and add --report-to-review option in env.CONFIGURATION_PARAMETERS

	If needed, add other Swarm options, such as --report-build-start
and --report-build-success

	Go to Swarm project settings, check in Automated tests check-box and follow this instruction [https://www.perforce.com/perforce/r16.2/manuals/swarm/quickstart.integrate_test_suite.html]

The resulting URL you should insert in text field. The URL should look like:

http://<user>:<password>@<TeamCity URL>/httpAuth/action.html?add2Queue=<configuration>
&name=env.SHELVE_CHANGELIST&value={change}&name=env.PASS&value={pass}&name=env.FAIL&value={fail}
&name=env.REVIEW&value={review}

where

	user

	is a name of a TeamCity user triggering Swarm builds (preferably some bot)

	password

	is that user’s password

	TeamCity URL

	is actual server URL, including port if needed

	configuration

	is an ID of your Swarm configuration (see Build configuration ID in settings)

or, if your TeamCity supports anonymous build triggering, user & password can be omitted along with
httpAuth/ parameter.

	Probably, in the POST Body field you should additionally insert below line:

name=STATUS&value={status}

or, any other parameter. This is a workaround for TeamCity requirement for using POST method to trigger builds.

Configure project and configurations using Git

	Create a sub-project to a top-level project for Universum configurations

	In Parameters set env.CONFIG_PATH relative to project root

	Add oject-wide Git parameters:

	env.GIT_REPO

	a parameter to pass to git clone, e.g. ssh://user@server/project-name/

	env.GIT_REFSPEC

	if some non-default
git refspec [https://git-scm.com/book/en/v2/Git-Internals-The-Refspec]
is needed for project, specify it here

	Create post-commit configurations as described above

	When creating custom build configurations, use the following parameters instead of P4-specific:

	env.GIT_CHECKOUT_ID

	parameter to be passed to git checkout; can be commit hash, branch name,
tag, etc. (see official manual [https://git-scm.com/docs/git-checkout] for details)

	env.GIT_CHERRYPICK_ID

	one or several coma-separated commit IDs to cherry-pick
(see official manual [https://git-scm.com/docs/git-cherry-pick] for details)

Other usage examples

This page contains some examples of Python scripts using Universum.

Export Perforce repository to Git

Here’s an example script that ports certain directory with commit history
from Helix Perforce (P4) repository to Git. It sequentially reproduces directory state
for each submitted CL, and submits this repository state to Git using the same commit description.

Note

To port the whole repository you just have to set Perforce source directory
and Git destination directory to repository root

Command line description

	--p4-port

	Source Perforce repository; format equals to Perforce P4PORT
environment variable and usually looks like example.com:1666

	--p4-user

	Perforce account used to download (sync) files from Perforce server

	--p4-password

	Corresponding password for –p4-user

	--p4-client

	Name of a temporary Perforce client (workspace) to be created automatically;
this client will be deleted after the script finishes its work

	--p4-depot-path

	Particular folder in source Perforce repository to be ported;
should be provided in Perforce-specific format, e.g. //depot/path/...

	--p4-client-root

	Local folder, where the source commits will be downloaded to;
should be absolute path; should be anywhere inside destination Git repository

	--git-repo

	Destination Git repository; should be absolute path; repository should already exist

	--git-user

	Git account used to commit ported changes

	--git-email

	Mandatory Git parameter for committer; should correspond to –git-user

Note

--p4-client-root should not necessarily equal --git-repo;
it just has to be somewhere inside repository

Preconditions

	Git repository already exists. It can be cloned from remote or created via git init

	Git account used for porting is authorized to commit

	Perforce account used for porting is authorized to download (sync) source folder

	Perforce client does not exist

Script

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

	#!/usr/bin/env python
-*- coding: UTF-8 -*-

import argparse
from P4 import P4
import universum

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument("--p4-port")
 parser.add_argument("--p4-user")
 parser.add_argument("--p4-password")
 parser.add_argument("--p4-client")
 parser.add_argument("--p4-depot-path")
 parser.add_argument("--p4-client-root")
 parser.add_argument("--git-repo")
 parser.add_argument("--git-user")
 parser.add_argument("--git-email")
 args = parser.parse_args()

 p4 = P4()

 p4.port = args.p4_port
 p4.user = args.p4_user
 p4.password = args.p4_password
 client_name = args.p4_client

 p4.connect()

 depot_path = args.p4_depot_path

 client = p4.fetch_client(client_name)
 client["Root"] = args.p4_client_root
 client["View"] = [depot_path + " //" + client_name + "/..."]
 p4.save_client(client)
 p4.client = client_name

 changes = p4.run_changes("-s", "submitted", depot_path)
 cl_list = []
 for change in changes:
 cl_list.append(change["change"])

 for cl in reversed(cl_list):
 line = depot_path + '@' + cl
 p4.run_sync("-f", line)

 universum.main(["submit",
 "-ot", "term",
 "-vt", "git",
 "-cm", p4.run_describe(cl)[0]['desc'],
 "-gu", args.git_user,
 "-ge", args.git_email,
 "-pr", args.git_repo,
 "-gr", "file://" + args.git_repo,
 "-grs", "master"])

 p4.delete_client(client_name)

if __name__ == "__main__":
 main()

Possible script modifications

In this example commit messages are preserved, but all changes are committed to Git from one user.
To port commit users as well use p4.run_describe(cl)[0]['user'] to find P4 user
and replace incoming parameters --git-user, --git-email with
mapping of P4 users into Git user parameters (-gu, -ge) that are passed to submitter.
See lines 52-53 for the reference.

Also this script only can process the contents of one P4 folder, creating a single mapping for it
in client["View"]. To use multiple mappings, edit client["View"] accordingly
instead of parsing --depot-path parameter. See line 35 for the reference.

Change log

0.18.6 (2020-04-27)

Bug fixes

	
	p4: fix fix the bug with failing workspace cleanup on attempt to revert entire workspace,

	because it requires admin access to the perforce server.
The buggy code was introduced by the fix of the issue with reverting files,
when there is no file system access to them.

0.18.5 (2020-04-24)

New features

	submit: create and delete real CL to not interfere with any changes in default CL

Bug fixes

	
	p4: do not try to revert local files as they can be no longer accessible for write

	to avoid creation of undeletable CLs and workspaces

	launcher: fix unsuccessful step launch in Ubuntu 14.04 (Python 2.7.6)

0.18.4 (2020-04-06)

Bug fixes

	p4: force clean not deleting CLs leading to buid failures when client exists and contains CLs

	jenkins_plugin: steps coloring not working when not using Jenkins Pipeline

	docs: update command line arguments in docs to correspond to real ones

0.18.3 (2020-01-10)

New features

	
	launcher command line arguments renamed

	
	see ‘Output’ and ‘Configuration execution’ arguments for new options list

	old options –launcher-config-path and –launcher-output are still supported
but not recommended to use any more

	launcher: add ‘–filter’ option filtering steps to be executed

	nonci: add nonci mode of running Universum

	jenkins_plugin: expand failed steps by default

	test: add Java & JS tests for Jenkins plugin

Bug fixes

	jenkins_plugin: fix collapsing with timestamps plugin usage

0.18.2 (2019-10-09)

New features

	vcs: add ‘github’ VCS type

	vcs: implement GitHub as code review system

	github: add inline comments for code_report

	jenkins_plugin: add jenkins plugin for Universum logs pretty printing

	test: clean environment for tests

Bug fixes

	handle SIGTERM properly

	p4: ignore only expected exceptions on file revert

	test: single poll fails because httpretty conflicts with docker-py

	test: whitespaces in local paths

0.18.1 (2019-07-23)

New features

	out: add Universum version as log identifier for Jenkins plugin

Bug fixes

	artifacts: rewrite ‘make_archive’ to use ZIP64 extensions

	tests: fails if VCS is set globally via env

	out: remove old Jenkins block labels because of upcomming plugin update

0.18.0 (2019-05-28)

BREAKING CHANGES

	remove setting default VCS type to p4.
–vcs-type is now a required option

New features

	docs: restructure documentation, switch README to Markdown

	docs: add logo, favicon and community docs

	docs: add example P4-to-Git porting script

	args: VCS type can now be defined via environment variable

Bug fixes

	incorrect checks of parameters

	argument error message for subcommands

	docs: reference to artifact_prebuild_clean

	submit: git module returns error if there are no files

	p4: no error on sync if depot is empty

	git: bug with unicode on newer GitPython

0.17.0 (2019-02-01)

New features

	api: add ‘file-diff’ for Git & Gerrit

Bug fixes

	code_report: fixed missing project_home parameter in arguments

	setup: specify python version in setup.py, merge ‘source_doctest’ make target into ‘test’

0.16.2 (2018-12-13)

New features

	configs: add support of setting the environment variables for build steps

	code_report: add parameter ‘–output-directory’ for Uncrustify fixed files

	code_report: read HtmlDiff argument value from Uncrustify config

	api: add initial API support and ‘file-diff’ as example usage

Bug fixes

	p4: remove ‘master CL check’ feature as it doesn’t work correctly

	p4: fix ascii decoding on p4 diff

0.16.1 (2018-11-22)

New features

	code_report: replace wildcards with directory names processing for Uncrustify

	code_report: add regexp support in pattern filter for Uncrustify

Bug fixes

	p4: fix ‘Related Change IDs’ bug with wrong current review determining

0.16.0 (2018-11-07)

New features

	launch: add critical background steps

	vcs: make VCS-related packages (e.g. gitpython) not reqired if not used

	code_report: add separate entry points for all static analysers

	code_report: add Uncrustify static analyser

	out: add pretty step numbering padding

Bug fixes

	args: fix required argument check to not accept empty values as valid

	launcher: finish background steps after foreground steps failing

	out: add reporting failed background steps to TC

0.15.4 (2018-09-26)

Bug fixes

	swarm: fix not adding current Swarm CL number to list of CLs to unshelve

0.15.3 (2018-09-26)

Bug fixes

	swarm: fix ‘[Related change IDs]’ parsing

0.15.2 (2018-09-26)

New features

	swarm: add ‘[Related change IDs]’ parsing for Swarm reviews

0.15.1 (2018-09-17)

BREAKING CHANGES

	create unified entry point for all universum subcommands.
New usage is universum poll and universum submit

New features

	launcher: add ‘finish_background’ key to Variations

Bug fixes

	submit: fix p4 submit fails for files opened in another workspace

0.15.0 (2018-09-04)

BREAKING CHANGES

	swarm: stop legacy support of ‘SHELVE_CHANGELIST’ environment variable
for Swarm CL number

Bug fixes

	jenkins: fix Jenkins relative artifact paths/links

0.14.7 (2018-08-17)

New features

	out: add Jenkins plug-in specific labels for log collapsing

0.14.6 (2018-08-15)

New features

	review: add ‘–build-only-latest’ option for skipping
review builds of not latest review revisions

	add hidden ‘–clean-build’ option for repeated debugging

0.14.5 (2018-08-09)

New features

	swarm: rename environment variable for Swarm CL (‘SWARM_CHANGELIST’)
old name is still supported though

0.14.4 (2018-08-03)

Bug fixes

	swarm: fix Swarm review revision processing

0.14.3 (2018-08-01)

Bug fixes

	swarm: fix latest Swarm review revision detection

0.14.2 (2018-07-30)

Bug fixes

	gerrit: add exceptions on wrong Gerrit review parameters

	swarm: return voting for specified review version

	swarm: add review revision to comment text

0.14.1 (2018-07-23)

New features

	report: add ‘–report-no-vote’ option for vote skipping

Bug fixes

	configs: remove outdated code style functions, fix get_project_root

	code_report: fix duplication of found issues message

	launcher: remove stderr from console output for launcher output type ‘file’

0.14.0 (2018-06-25)

New features

	code_report: add svace analysis tool

	main: add finalizing execution even if interrupted by user

	main: add ‘–finalize-only’ option for cleaning without execution

	artifacts: add recursive wildcards (**) to artifacts

	utils: add PyCharm case to environment detection

	submit: fix submitted P4 CL number in logs

Bug fixes

	submit: skip P4 submit if default CL has any files before reconciling

	setup: specify httpretty version to avoid SSL import errors

0.13.6 (2018-05-18)

New features

	p4: create environment variables for each mapping’s sync CL

Bug fixes

	docs: fix change log

0.13.5 (2018-05-10)

BREAKING CHANGES

	p4: remove allwrite option in p4 client;
please set ‘+w’ modifier for files in VCS to be edited

	configs: if_env_set variables should now be splat with && only

New features

	report: add support of tagging TeamCity builds

	swarm: PASS and FAIL parameters are no longer mandatory

	submit: new files are now added to VCS by submitter with ‘+w’ modifier

	report: add link to build log to successful reports

	report: move link to review to ‘Reporting build started’ block

Bug fixes

	p4: fix unhandled ‘no file(s) to reconcile’ P4Exception

	out: fix bug with decoding non-ascii strings

	docs: documentation fixed and updated; please pay special attention to
prebuild artifact cleaning Variations key

0.13.4 (2018-04-13)

New features

	code_report: add number of issues to build status

	artifacts: add link to artifact files to build log

Bug fixes

	p4: p4 client now is created with allwrite option

	gerrit: report all issues to review with a single request

	code_report: return error if pylint is not installed

0.13.3 (2018-03-22)

New features

	configs: add negative ‘if_env_set’ values

Bug fixes

	add return of exit codes to all main scripts

	report: fix bug with multiple success reporting

0.13.2 (2018-03-07)

New features

	artifacts: add CONFIGS_DUMP.txt to build artifacts

	code_report: add support for pylint3 for ubuntu14, restore LogWriterCodeReport

	report: update build result reporting, add skipped steps

	report: add option to only report failed steps

Bug fixes

	report: remove duplicating comment

	out: fix skipped steps reporting

	configs: fix critical step handling while merging one-element Variations

0.13.1 (2018-02-16)

Bug fixes

	poll: fix wrong order of polled changes

0.13.0 (2018-02-14)

New features

	report: add driver for processing Jenkins builds

	launcher: add critical steps for groups

	setup: add entry points for all high level scripts

Bug fixes

	files: fix cleaning sources function in finalize for Git

	tests: add stderr and exception/traceback detection

	tests: remove pylint error ignoring

	code_report: add exit codes for code_report

0.12.5 (2018-02-06)

Bug fixes

	gerrit: update ‘Verified’ to work with non-default labels

	artifacts: fix exception message when encountering existing artifacts

	docs: doc files removed from master branch

0.12.4 (2018-01-31)

New features

	code_report: implement static analysis support

0.12.3 (2018-01-19)

New features

	code_report: add code_report stub for further static analysis support

	tests: make errors in finalize affect exit code

Bug fixes

	docs: update TeamCity-related documentation

	tests: fix docker images makefiles

0.12.2 (2017-12-27)

New features

	artifacts: change to shell-style wildcards instead of old limited ones

	submit: reconcile files and directories from list

	submit: reconcile using wildcards

	report: update list of all performed steps, add successful

	docs: new Variations keys described

Bug fixes

	report: fix reporter message for build started

	p4: exit committed CL precommit check wihout failing

	tests: remove docker container caching where not necessary

	tests: fix import thirdparty detection

0.12.1 (2017-12-11)

New features

	artifacts: clean artifacts before build

	git: add user and email to Git module parameters

Bug fixes

	vcs: roll back of import fixes from release 0.10.2 causing Swarm builds of submitted CLs to fail

	tests: set user and email in testing Git repo

0.12.0 (2017-11-29)

BREAKING CHANGES

	swarm: the --swarm flag is replaced with --report-to-review.
All pre-commit check configuration must be updated to reflect this change

Bug fixes

	submit: fix incorrectly back-ported fix from the new architecture,
which prevented submit to git from working

	gerrit: fix bug with accessing url path by incorrect index and with including username
into url in build log on pre-commit check

	gerrit: fix bug with adding apostrophe character (‘) to the ssh command line
and failing to submit build start report to gerrit review

0.11.2 (2017-11-24)

New features

	launcher: add support for critical steps - now steps can be marked with
“critical” attribute to fail entire build in case of step failure.
By default the build continues even if some steps have failed

Bug fixes

	submit: fix setup script to actually install submitter module
and to create console script called “universum_submit”

	submit: add support for executing commit message hooks by using external git utility
instead of gitpython module (required to submit to gerrit)

Known issues

	submit: commit message hook is not downloaded from gerrit during cloning of the repository.
As a workaround add installation of commit message hook to configs.py:

configs += Variations([dict(name="Install commit message hook",
 command=["scp", "-p", "-P", "29418",
 "<user>@<server>:hooks/commit-msg", ".git/hooks/"])])

	submit: by default, submit uses “temp” subfolder of the current folder as working directory.
As a workaroung add the explicit setting of project root to configs.py:

configs += Variations([dict(name="Submit",
 command=["universum_submit",
 "-pr", get_project_root(),
 "--vcs-type", "gerrit",
 "--commit-message", "Publish artifacts",
 "--file-list", "out/module.bin"])])

0.11.1 (2017-11-22)

New features

	review: add link to review page on server to logs

	docs: add instructions for TeamCity integration

	tests: add gravity tests for cases found by coverage

	tests: extend test_git_poll test suite with special merging cases

Bug fixes

	report: remove special characters from report message

	launcher: fix paths processing

0.11.0 (2017-11-09)

New features

	submit: add submit functionality for Git & Gerrit

	tests: add coverage report

	tests: add test for checking referencing dependencies

0.10.7 (2017-11-07)

Bug fixes

	gerrit: resolving issues fixed

0.10.6 (2017-11-06)

New features

	tests: add submitter initial tests

Bug fixes

	files: fix module construction order in main module and git refspec processing errors

0.10.5 (2017-11-03)

New features

	files: add repository state file

	poll: add poller for Git and initial tests

0.10.4 (2017-10-17)

New features

	submit: add an external script for submitting to repository

Bug fixes

	p4: remove reusing of existing p4 clients

0.10.3 (2017-10-17)

Bug fixes

	git: typo fix

0.10.2 (2017-10-10)

New features

	git: add git checkout, git cherry-pick and refspec functionality

	gerrit: add Gerrit support

	configs: add quotes and warning if space is detected within parameter in command item

Bug fixes

	tests: make unused vcs module import non-obligatory

0.10.1 (2017-09-22)

New features

	git: add initial Git support; change --no-sync into switch of --vcs-type

Bug fixes

	p4: fix ‘Librarian checkout’ exceptions

0.10.0 (2017-09-13)

New features

	p4: add --p4-force-clean instead of --p4-no-clean option:
p4client is now not deleted by default

Bug fixes

	Project ‘Universe’ renamed into ‘Universum’ to avoid name duplication

	reporter: TeamCity-related parameters are no longer mandatory

0.9.1 (2017-08-25)

New features

	launcher: add support for custom environment variables values

0.9.0 (2017-08-22)

New features

	Project ‘Universe’ transformed into a Python module, installable with pip

Bug fixes

	docs: update documentation on module arguments

0.8.1 (2017-08-03)

New features

	configs: remove unnecessary nesting of configurations

Bug fixes

	launcher: append sys.path with config_path to import any subsidiary modules

	report: fix non-existing report_artifacts processing - ignore non-existing directories

	launcher: fix empty variable names - ‘ & name’ is now processed correctly

0.8.0 (2017-07-26)

New features

	CI Framework renamed into project ‘Universe’

	docs: add description of main script command-line parameters

Bug fixes

	docs: fix table content width, remove unnecessary scroll bars

0.7.0 (2017-07-21)

New features

	docs: add system prerequisites page to user manual

	docs: add documentation for _universum.configuration_support module

	launcher: add support for more than one environment variable to
filter configurations

Bug fixes

	launcher: fix configuration filtering: filter artifacts
as well as configurations

	output: use TeamCity built-in methods of stderr reporting for correct in-block
error highlighting

0.6.3 (2017-07-13)

Bug fixes

	docs: fix product name and version display in documentation

0.6.2 (2017-07-11)

New features

	report: add direct links to build artifacts into reports

0.6.1 (2017-07-05)

New features

	files: add working directory reference to logs

Bug fixes

	p4: bring back reverting in ‘prepare repository’ step and add more logs

0.6.0 (2017-07-05)

New features

	launcher: add configuration filtering

	artifacts: wildcard initial support

0.5.0 (2017-06-06)

New features

	tests: add docker-based testing for p4poll

	launcher: change stderr printing to real-time instead of united report

0.4.1 (2017-05-30)

Bug fixes

	artifacts: fix artifacts reference before creation

0.4.0 (2017-05-30)

New features

	artifacts: artifacts are now collected to a separate directory

	main: add version numbering

0.3.0 (2017-05-25)

New features

	swarm: less default comments to Swarm, more optional

	tests: add pylint check

	tests: add doctest collecting

Bug fixes

	test: fix bug with stopping all test types once one type detects failure

	swarm: fix reporting to Swarm builds that did not execute actual build steps

	launcher: fix artifact collecting interruption

	launcher: fix extra dot directory in artifact archives

0.2.1 (2017-05-17)

Bug fixes

	swarm: Swarm double prefixes fixed

0.2.0 (2017-05-16)

New features

	p4: switch to disposable workspaces

	p4: add multiple VCS roots support

	poll: add perforce server polling to trigger builds by opening specified URL

	tests: add test stub

	tests: switch to py.test

Bug fixes

	p4: fix argument processing & list sorting

	p4: add p4client name changing

	tests: fix configs.py

	tests: add missing thirdparty dependency - module ‘py’

0.1.1 (2017-04-26)

Bug fixes

	output: add warnings display

0.1.0 (2017-04-26)

New features

	docs: add change log

	launcher: add asynchronous step execution

	docs: update system configuring manual

Bug fixes

	launcher: change default ‘command’ launch directory back to project root

 Python Module Index

 _

 		 	

 		
 _	

 	[image: -]
 	
 _universum	

 	
 	
 _universum.configuration_support	

 	
 	
 _universum.modules.launcher	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | S
 | V

_

 	
 	__add__() (Variations method)

 	__mul__() (Variations method)

 	
 	_universum.configuration_support (module)

 	_universum.modules.launcher (module)

A

 	
 	all() (Variations method)

C

 	
 	check_if_env_set() (in module _universum.modules.launcher)

 	
 	combine() (in module _universum.configuration_support)

D

 	
 	dump() (Variations method)

F

 	
 	filter() (Variations method)

G

 	
 	get_project_root() (in module _universum.configuration_support)

S

 	
 	set_project_root() (in module _universum.configuration_support)

V

 	
 	Variations (class in _universum.configuration_support)

Non-CI subcommand

The purpose of this mode is improving usability of ‘Universum’ on a local host PC.
This mode is designed to use ‘Universum’ as a wrapper for a complex build system.
In particular such wrapper could help to resolve the following issues:

	every build command run requires setting up a lot of input parameters

	bash script is used to wrap build system like GNU Make

	universum configs contain duplications of build system wrapper

The ‘universum nonci’ has the following differences from the regular mode:

	report to code review system, such as ‘GitHub’ or ‘Swarm’, is disabled

	version control is disabled

	implemented removing of artifacts before build

	‘Universum’ works with sources ‘in place’, without copying

usage: universum nonci [-h] [--out {console,file}] [--config CONFIG_PATH]
 [--filter LAUNCHER.STEP_FILTER]
 [--project-root PROJECT_ROOT]
 [--server-type {tc,jenkins,local}]
 [--tc-server TEAMCITY_SERVER] [--tc-build-id BUILD_ID]
 [--tc-configuration-id CONFIGURATION_ID]
 [--tc-auth-user-id TC_USER]
 [--tc-auth-passwd TC_PASSWD]
 [--jenkins-build-url BUILD_URL]
 [--out-type {tc,term,jenkins}]
 [--artifact-dir ARTIFACT_DIR] [--no-archive]
 [--report-build-start] [--report-build-success]
 [--report-only-fails] [--report-no-vote]

Output

	--out, -o

	Possible choices: console, file

Define whether to print build logs to console or file. Log file names are generated based on the names of build steps. By default, logs are printed to console when the build is launched on Jenkins or TeamCity agent

	--out-type, -ot

	Possible choices: tc, term, jenkins

Type of output to produce (tc - TeamCity, jenkins - Jenkins, term - terminal). TeamCity environment is detected automatically when launched on build agent.

Configuration execution

External command launching and reporting parameters

	--config, -cfg

	Path to project config file (example: -cfg=my/prject/my_conf.py). Mandatory parameter.

Environment variable: $CONFIG_PATH

	--filter, -f

	Filter steps to execute. A single filter or a set of filters separated by ‘:’. Exlude using ‘!’ symbol before filter. Example: -f=’str1:!not str2’ OR -f=’str1’ -f=’!not str2’. See online docs for more details.

Source files

Parameters determining the processing of repository files

	--project-root, -pr

	Temporary directory to copy sources to. Default is ‘temp’

Environment variable: $PROJECT_ROOT

Automation server

Automation server options

	--server-type, -st

	Possible choices: tc, jenkins, local

Type of environment to refer to (tc - TeamCity, jenkins - Jenkins, local - user local terminal). TeamCity and Jenkins environment is detected automatically when launched on build agent

TeamCity variables

TeamCity-specific parameters

	--tc-server, -ts

	TeamCity server URL

Environment variable: $TEAMCITY_SERVER

	--tc-build-id, -tbi

	teamcity.build.id

Environment variable: $BUILD_ID

	--tc-configuration-id, -tci

	system.teamcity.buildType.id

Environment variable: $CONFIGURATION_ID

	--tc-auth-user-id, -tcu

	system.teamcity.auth.userId

Environment variable: $TC_USER

	--tc-auth-passwd, -tcp

	system.teamcity.auth.password

Environment variable: $TC_PASSWD

Jenkins variables

Jenkins-specific parameters

	--jenkins-build-url, -jbu

	Link to build on Jenkins (automatically set by Jenkins)

Environment variable: $BUILD_URL

Artifact collection

Parameters of archiving and collecting of build artifacts

	--artifact-dir, -ad

	Directory to collect artifacts to. Default is ‘artifacts’

Environment variable: $ARTIFACT_DIR

	--no-archive

	By default all directories noted as artifacts are copied as .zip archives. This option turn archiving off to copy bare directories to artifact directory

Default: False

Result reporting

Build results collecting and publishing parameters

	--report-build-start, -rst

	Send additional comment to review system on build started (with link to log)

Default: False

	--report-build-success, -rsu

	Send comment to review system on build success (in addition to vote up)

Default: False

	--report-only-fails, -rof

	Include only the list of failed steps to reporting comments

Default: False

	--report-no-vote, -rnv

	Do not vote up/down review depending on result

Default: False

Poll command line

usage: universum poll [-h] [--file DB_FILE] [--num MAX_NUMBER]
 [--server-type {tc,jenkins,local}]
 [--tc-server TEAMCITY_SERVER] [--tc-build-id BUILD_ID]
 [--tc-configuration-id CONFIGURATION_ID]
 [--tc-auth-user-id TC_USER] [--tc-auth-passwd TC_PASSWD]
 [--jenkins-trigger-url URL]
 [--out-type {tc,term,jenkins}] [--vcs-type VCS_TYPE]
 [--project-root PROJECT_ROOT] [--git-repo GIT_REPO]
 [--git-refspec GIT_REFSPEC]
 [--p4-project-depot-path P4_PATH]
 [--p4-mappings P4_MAPPINGS [P4_MAPPINGS ...]]
 [--p4-port P4PORT] [--p4-user P4USER]
 [--p4-password P4PASSWD]

Named Arguments

	--file, -f

	File to store last known CLs

Environment variable: $DB_FILE

Default: “p4poll.json”

	--num, -n

	Maximum number of CLs processed, default is 10

Environment variable: $MAX_NUMBER

Default: 10

Automation server

Automation server options

	--server-type, -st

	Possible choices: tc, jenkins, local

Type of environment to refer to (tc - TeamCity, jenkins - Jenkins, local - user local terminal). TeamCity and Jenkins environment is detected automatically when launched on build agent

TeamCity variables

TeamCity-specific parameters

	--tc-server, -ts

	TeamCity server URL

Environment variable: $TEAMCITY_SERVER

	--tc-build-id, -tbi

	teamcity.build.id

Environment variable: $BUILD_ID

	--tc-configuration-id, -tci

	system.teamcity.buildType.id

Environment variable: $CONFIGURATION_ID

	--tc-auth-user-id, -tcu

	system.teamcity.auth.userId

Environment variable: $TC_USER

	--tc-auth-passwd, -tcp

	system.teamcity.auth.password

Environment variable: $TC_PASSWD

Jenkins variables

Jenkins-specific parameters

	--jenkins-trigger-url, -jtu

	Url to trigger, must include exactly one conversion specifier (%s) to be replaced by CL number, for example: http://localhost/%s

Environment variable: $URL

Output

Log appearance parameters

	--out-type, -ot

	Possible choices: tc, term, jenkins

Type of output to produce (tc - TeamCity, jenkins - Jenkins, term - terminal). TeamCity environment is detected automatically when launched on build agent.

Source files

	--vcs-type, -vt

	Possible choices: none, p4, git, gerrit, github

Select repository type to download sources from: Perforce (‘p4’), Git (‘git’), Gerrit (‘gerrit’), GitHub (‘github’) or a local directory (‘none’). Gerrit uses Git parameters. Each VCS type has its own settings.

Environment variable: $VCS_TYPE

	--project-root, -pr

	Temporary directory to copy sources to. Default is ‘temp’

Environment variable: $PROJECT_ROOT

Git

Git repository settings

	--git-repo, -gr

	See your project home page for exact repository identifier, passed to ‘git clone’. If using SSH, ‘–git-repo’ format is ‘ssh://user@server:port/detailed/path’

Environment variable: $GIT_REPO

	--git-refspec, -grs

	Any additional refspec to be fetched

Environment variable: $GIT_REFSPEC

Perforce

	--p4-project-depot-path, -p4d

	Depot path to get sources from (starts with ‘//’, ends with ‘/…’Only supports one path. Cannot be used with ‘–p4-mappings’ option

Environment variable: $P4_PATH

	--p4-mappings, -p4m

	P4 mappings. Cannot be used with ‘–p4-project-depot-path’ option. Use the following format: ‘//depot/path/… /local/path/…’, where the right half is the same as in real P4 mappings, but without client name. Just start from client root with one slash. For more than one add several times or split with ‘,’ character

Environment variable: $P4_MAPPINGS

	--p4-port, -p4p

	P4 port (e.g. ‘myhost.net:1666’)

Environment variable: $P4PORT

	--p4-user, -p4u

	P4 user name

Environment variable: $P4USER

	--p4-password, -p4P

	P4 password

Environment variable: $P4PASSWD

Submit command line

usage: universum submit [-h] [--create-review] [--edit-only]
 [--commit-message COMMIT_MESSAGE]
 [--reconcile-list RECONCILE_LIST [RECONCILE_LIST ...]]
 [--out-type {tc,term,jenkins}] [--vcs-type VCS_TYPE]
 [--project-root PROJECT_ROOT] [--git-user GITUSER]
 [--git-email GITEMAIL] [--git-repo GIT_REPO]
 [--git-refspec GIT_REFSPEC] [--p4-client P4CLIENT]
 [--p4-port P4PORT] [--p4-user P4USER]
 [--p4-password P4PASSWD]

Named Arguments

	--create-review

	create deletable review (shelve for P4, temp branch for Git) instead of actual submitting to repo

Default: False

	--edit-only

	Only submit existing vcs modifications, no adding or deleting

Default: False

	--commit-message, -cm

	Commit message to add

Environment variable: $COMMIT_MESSAGE

	--reconcile-list, -rl

	List of vcs or directories to be reconciled for commit. Relative paths starting at client root are supported

Environment variable: $RECONCILE_LIST

Output

Log appearance parameters

	--out-type, -ot

	Possible choices: tc, term, jenkins

Type of output to produce (tc - TeamCity, jenkins - Jenkins, term - terminal). TeamCity environment is detected automatically when launched on build agent.

Source files

	--vcs-type, -vt

	Possible choices: none, p4, git, gerrit, github

Select repository type to download sources from: Perforce (‘p4’), Git (‘git’), Gerrit (‘gerrit’), GitHub (‘github’) or a local directory (‘none’). Gerrit uses Git parameters. Each VCS type has its own settings.

Environment variable: $VCS_TYPE

	--project-root, -pr

	Temporary directory to copy sources to. Default is ‘temp’

Environment variable: $PROJECT_ROOT

Git

	--git-user, -gu

	Git user name for submitting

Environment variable: $GITUSER

	--git-email, -ge

	Git user email for submitting

Environment variable: $GITEMAIL

	--git-repo, -gr

	See your project home page for exact repository identifier, passed to ‘git clone’. If using SSH, ‘–git-repo’ format is ‘ssh://user@server:port/detailed/path’

Environment variable: $GIT_REPO

	--git-refspec, -grs

	Any additional refspec to be fetched

Environment variable: $GIT_REFSPEC

Perforce

	--p4-client, -p4c

	Existing P4 client (workspace) name to use for submitting

Environment variable: $P4CLIENT

	--p4-port, -p4p

	P4 port (e.g. ‘myhost.net:1666’)

Environment variable: $P4PORT

	--p4-user, -p4u

	P4 user name

Environment variable: $P4USER

	--p4-password, -p4P

	P4 password

Environment variable: $P4PASSWD

 _static/plus.png

_static/up.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Project ‘Universum’

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/favicon.png

_static/file.png

_static/minus.png

